Published Jun 2015
Citation
Marshall DA, Burgos-Liz L, IJzerman MJ, et al. Selecting a dynamic simulation modeling method for health care delivery research—part 2: report of the ISPOR Simulation Modeling Emerging Good Practices Task Force. Value Health. 2015;18(2):147-160.
Abstract
In a previous report, the ISPOR Task Force on Dynamic Simulation
Modeling Applications in Health Care Delivery Research Emerging
Good Practices introduced the fundamentals of dynamic simulation
modeling and identified the types of health care delivery problems for
which dynamic simulation modeling can be used more effectively
than other modeling methods. The hierarchical relationship between
the health care delivery system, providers, patients, and other stakeholders
exhibits a level of complexity that ought to be captured using
dynamic simulation modeling methods. As a tool to help researchers
decide whether dynamic simulation modeling is an appropriate
method for modeling the effects of an intervention on a health care
system, we presented the System, Interactions, Multilevel, Understanding,
Loops, Agents, Time, Emergence (SIMULATE) checklist consisting
of eight elements.
This report builds on the previous work,
systematically comparing each of the three most commonly used
dynamic simulation modeling methods—system dynamics, discrete event
simulation, and agent-based modeling. We review criteria for
selecting the most suitable method depending on 1) the purpose—
type of problem and research questions being investigated, 2) the
object—scope of the model, and 3) the method to model the object to
achieve the purpose. Finally, we provide guidance for emerging good
practices for dynamic simulation modeling in the health sector,
covering all aspects, from the engagement of decision makers in the
model design through model maintenance and upkeep.
We conclude
by providing some recommendations about the application of these
methods to add value to informed decision making, with an emphasis
on stakeholder engagement, starting with the problem definition.
Finally, we identify areas in which further methodological
development will likely occur given the growing “volume, velocity
and variety” and availability of “big data” to provide empirical
evidence and techniques such as machine learning for parameter
estimation in dynamic simulation models.
Upon reviewing this report
in addition to using the SIMULATE checklist, the readers should be
able to identify whether dynamic simulation modeling methods are
appropriate to address the problem at hand and to recognize the
differences of these methods from those of other, more traditional
modeling approaches such as Markov models and decision trees.
This
report provides an overview of these modeling methods and examples
of health care system problems in which such methods have been
useful. The primary aim of the report was to aid decisions as to
whether these simulation methods are appropriate to address specific
health systems problems. The report directs readers to other resources
for further education on these individual modeling methods for
system interventions in the emerging field of health care delivery
science and implementation.
Keywords: decision making, dynamic simulation modeling, health care
delivery, methods.
Copyright © 2015, International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc.
Full Content
Log In to View ReportQuestions?
For any questions about this report please contact us.